
Ubuntu Tutorial:

MSPGCC and Eclipse

Alvaro Aguilar

August 17, 2010

Abstract

I put together this guide from various sources I found on the in-

ternet. It is meant to help a beginner set-up the Eclipse IDE to work

with MSPGCC and be able to use it to debug and program MSP430

devices. This guide is just a compilation, so you may find further

insight into some of the steps by visiting the following sites:

1. MSPGCC Wiki

2. MSPGCC4 and MSPDEBUG

3. MSP430 Eclipse MSPGCC Ubuntu Tutorial

4. Eclipse IDE with MSPGCC

Before beginning with the installation, you have to make sure you

have the following packages:

• subversion

• texinfo

• patch

• libncurses5-dev

• zlibc

• zlib1g-dev

• libx11-dev

• libusb-dev

• libreadline6-dev

Now that the basics are covered, we will first install and set up mspgcc.

We will later tell Eclipse to use these tools in order to compile our

C programs and output a code that the MSP430s can understand.

Keep in mind during the process the Eclipse is a general working

environment, and we must tell it what to do with the files: what

compiler to feed them to, and with what parameters.

MSPGCC

There are two option for this package. The older version is more robust, but
needs additional installation of certain packages. Basically, you will need
to install an older version of gcc because Ubuntu ships with v.4.x but you
need v.3.x for the original MSPGCC. Additional information can be found

1

at MPGCC Wiki The newer version, mspgcc4, is available for download as
a pre-built package.I installed mspgcc version 4 by visiting the following
website:

http://sourceforge.net/projects/mspgcc4/files/

Extract its contents onto /opt/mspgcc and change its permissions using the
following command:

sudo chown -R $USER.$USER /opt/mspgcc

In order to debug your device, you will additionally need “msp430-gdbproxy”.
Run the following set of commands to get it along with its libraries:

cd /opt/mspgcc/bin

wget http://www.soft-switch.org/downloads/mspgcc/msp430-gdbproxy

chmod 777 msp430-gdbproxy

cd /usr/lib

sudo wget http://www.soft-switch.org/downloads/mspgcc/libHIL.so

sudo wget http://www.soft-switch.org/downloads/mspgcc/libMSP430.so

Now that we have mspgcc installed we must add the /opt/mspgcc/bin

path to our environment so that we may call these functions from the com-
mand line. Edit the file /etc/environment and add the path at the end of
the line. A reboot is needed in order for the change to take effect.

Finally, there is a small tweak needed in order to recognize the newer
MSP430 devices. Running the command dmesg | tail after plugging in
your device should reveal what is needed. If you see an error saying ti
download firmware - firmware not found, then you must perform the
following step. You will need the firmware called ti 3410.fw, which can be
found under /lib/firmware/ti 3410.fw. Run the following command in
order to make it accessible:

ln -s /lib/firmware/ti_3410.fw /lib/firmware/ti_usb-3410.bin}

Reconnecting the device and running dmesg | tail again should generate
an output in which you see a line saying:

TI USB 3410 1 port adapter converter now attached to ttyUSB0

2

If you don’t see this, then you should change the configuration value of the
USB device. Attention: The USB device that you change will depend on
your dmesg | tail output, and the device that is recognized (in my example
it was 5-1). Become root before attempting to do this.

echo 2 > /sys/bus/usb/devices/5-1/bConfigurationValue

Since /dev/ttyUSB0 is owned by root.uucp, you should add your $USER
to the uucp group. Replace $USER in the following command in order to
add a different user to the group. Also, be sure to use the -a flag in order to
append the file to the group rather than overwriting its contents.

usermod -a -G uucp $USER

You may now start msp430-gdbproxy by trying the following command:

msp430-gdbproxy msp430 /dev/ttyUSB0

If all goes well the proxy should be initialized and ready to receive com-
mands through port 2000.

By the way, this is not the only way to communicate with your device.
You may also download a tool called mspdebug. This one supports newer
devices that might not be supported by the usual msp430-gdb (like the eZRF-
2500). Check out this tutorial for info on how to set it up.

Now that MSPGCC is set-up, we can set up Eclipse in order to work with
it.

Eclipse

You will need to install Eclipse and a few add-ons. Begin by installing eclipse
from the command line:

sudo apt-get install eclipse

After the installation is done, fire up eclipse. Go to Help : Install New
Software. . .

You will want to install two software packages from the following loca-
tions:

3

Figure 1: Eclipse Install New Software

1. CDT add-on (Choose the one for your version of Eclipse):
http://www.eclipse.org/cdt/downloads.php

2. Zylin Embedded CDT:
http://opensource.zylin.com/embeddedcdt.html

On those sites, you will find the correct link to plug into the “Work with:”
box in Eclipse Install New Software. When the installation is done, Eclipse
will need to reboot for the changes to take effect.

After the restart, you will have to make a new C project. I created a
regular project like this:

4

Figure 2: Eclipse New Project

Click next and create a new project (I called mine led) as an Empty
Executable:

5

Figure 3: Eclipse LED C Executable Project

Click finish and you will be greeted by the default C/C++ perspective
under Eclipse. On the left side you will see the Project Explorer, where you
will be able to visualize everything under your source code. For now, you
can drag and drop the flash LED example in there. I got mine from the
IAR Embedded Workbench installation on a Windows Machine, but you can
download sample code from the TI website. This is what the screen should
look like after opening up the source file:

6

Figure 4: Eclipse C/C++ Perspective

Now that we have a project made, we need to specify the settings so that
Eclipse may build this project using the MSPGCC compiler. Right-click
on the project name and select Properties from the menu. Go to C/C++
Build and expand its contents to select Settings. Under the Tool Settings
tab, you will find settings for the Compiler, Linker and Assembler. First
of all, open up a terminal and type the following command:

msp430-gcc --target-help

The output will show all the supported MCU names; keep the correct one
for your device in mind. For example, my device is the MSP430F2013, and
the correct MCU name was msp430x2013.

Back on the GCC C Compiler option inside eclipse, specify the follow-
ing command:

msp430-gcc -mmcu=msp430x2013

Of course, change to your specific MCU name from before.

7

Figure 5: GCC C Compiler options

In order to include header files, the compiler must know where to find
them. Go to the Directories option under GCC C Compiler and specify
the directories where you keep the header files for mspgcc. The default direc-
tory is /opt/mspgcc/msp430/include. In the end, I included the following
directories.

/opt/mspgcc/msp430/include

/opt/mspgcc/include

/usr/include

Now we need to set up theGCC C Linker part in a similar manner. The
command needs to be the same, so just copy and paste the same information
into that field. However, we must tell the linker where the libraries are, so
under GCC C Linker, go to Libraries and include the following under
“Library search path (-L)”:

/opt/mspgcc/msp430/lib

/opt/mspgcc/lib

/usr/local/lib

8

Figure 6: GCC C Linker Libraries

Finally, the Assembler must be set-up correctly, so navigate down to it.
This time, the command is different, so in the “Command” field, enter the
following: msp430-as. As usual, we must also tell this assembler where to
find the include files. Click on General and add the following paths to the
“Include paths (-I)” box:

/opt/mspgcc/msp430/include

/opt/mspgcc/include

9

Figure 7: Assembler include paths

Now that our compiling tools are ready to be used, we need to tell Eclipse
what type of file to create. Head over to the “Build Artifact” tab and type
in “elf” under “Artifact Extension”. On the next tab over “Binary
Parsers”, make sure that the Elf Parser is selected.

10

Figure 8: Choose the elf extension under the Build Artifact tab

Compiling set-up is now finally done, so clicking OK should bring you
to the main page. Try building the project by selecting Project : Build
Project. If everything went well, you should have a succesful build. Other-
wise, check the console and correct the issues presented.

Now that we have a working executable, we want to debug it. I used
msp430-gdbproxy along with msp430-gdb in order to achieve this. You can
also use mspdebug by itself to do this step, and the set-up is similar so you
may use this guide to set it up under Eclipse as well. The proxy part is just a
proxy that forwards the commands from msp430-gdb to the actual MSP430
device connected to your computer. Therefore the first thing we will do is
set-up Eclipse to run the proxy before anything else. Head over to Run
: External Tools : External Tools Configurations. . . . Create a new
configuration and set it up like this. You should take a quick read at the
man page of msp430-gdbproxy before configuring the parameters in order to
ensure you got the right device. The arguments I passed where msp430 (type
of device) and then the port at which it was attached (this should be known
from the previously issued command dmesg | tail).

11

Figure 9: Setting up external tools in Eclipse

As you can see, I also other tools available. Namely, msp430-gdbproxy
running under wine. Find a great tutorial for this here. Additionally, I also
have a tool for running mspdebug. The following is a screenshot with the
parameters that worked for me. However, you should read the man page for
that command in order to make sure everything is set-up for your device.

12

Figure 10: Setting up mspdebug in Eclipse

Now that the proxy is set-up, try running it and observe the console
output. It should include certain information about your device and end with
the line “Listening on port 2000” or so. Once that is ready to go, we can
set up msp430-gdb to work as the debugger from inside Eclipse. In order
to do this, we need to open the Project Properties again. Therefore right-
click on the project name, and select Properties from the drop-down menu.
Under Run/Debug Settings, select New. . . and then click OK. Under
the “Main” tab ensured that the correct names are given for the Project and
for the Executable created during compilation. Now head to the “Debugger”
tab and select remote gdb/mi from the “Debugger” drop-down list. Type
in msp430-gdb on the “GDB Debugger” line. Go to the “Gdbserver Settings”
tab and select the port that msp430-gdbproxy is listening on; the default is
2000 along with 127.0.0.1 for the server name.

13

Figure 11: Setting up msp430-gdb in Eclipse

Finally, create a file in your home directory called .gdbinit. Inside of
this file, place the following lines:

set remoteaddresssize 64

set remotetimeout 999999

target remote localhost:2000

Conclusion

Once again, this guide is merely a compilation of different articles found
online. If you have questions regarding the procedures, or errors along the
way, be sure to check out the following websites:

14

1. MSPGCC Wiki

2. MSPGCC4 and MSPDEBUG

3. MSP430 Eclipse MSPGCC Ubuntu Tutorial

4. Eclipse IDE with MSPGCC

15

